Impact of Wind Farms in Power Systems
نویسندگان
چکیده
Beyond any doubt, we can consider century 21st as the one devoted to renewable energy. According to the International Energy Agency (IEA) (IEA, 2009) renewable sources shall provide about 35% of the European Union’s (EU) electricity by 2020, and within this context, wind energy is set to contribute the most nearly 35% of all the power coming from renewable sources. This evolution is based on sustainability scenarios, like the BLUE one (IEA, 2008) related to the reduction of greenhouse emissions. However, the appropriate integration of such renewable energy into power system grids still presents major challenges to Power Systems Operators (PSO) and planners. Nowadays wind energy has widely proved to be one of the most competitive and efficient renewable energy sources and, as a result, its use is indeed continuously increasing. As an example, in June 2010 total installed wind energy capacity around the world was 175,000 MW. Incorporation of wind energy units into distribution networks not only modifies power flows but also, in some situations could also result in under or over-voltage on specific points of the network (Jenkins, 2000), as well as could increase the cases of power quality problems and produce any type of alterations regarding voltage stability (Abdullah et al., 2010, Baghaee et al., 2009). The process of high wind energy penetration requires the impact analysis of this new technology in power systems. In these terms, some countries have developed grid codes in order to establish the requirements of wind farms (WF) into power networks. Moreover, power network planning with high wind energy penetration requires the definition of several factors, such as: the best technology to be used, the optimal number of units to be connected and the optimal size to be chosen. Currently a connected variable speed wind turbine to power systems by means of power electronics has the ability to supply reactive power to power systems. This capability allows wind turbines to participate in ancillary services as synchronous generators (Bhattacharya & Zhong, 2001), however, there are little works focusing on the participation of variable speed wind turbines in reactive power ancillary services (Amaris & Alonso, 2011; Bhattacharya & Zhong, 2001). In this chapter, a review of wind farms impact on power networks and on Grid codes requirements are analyzed. An optimal allocation of wind farms has been selected in order to maximize the system loadability as well as to reduce active any power losses of the whole network by using an optimization algorithm where reactive power capability of Double Fed Inductor Generator (DFIG) is already included in the formulation. Finally, conclusions and future researches are shown.
منابع مشابه
Reliability Assessment of Power Generation Systems in Presence of Wind Farms Using Fuzzy Logic Method
A wind farm is a collection of wind turbines built in an area to provide electricity. Wind power is a renewable energy resource and an alternative to non-renewable fossil fuels. In this paper impact of wind farms in power system reliability is investigate and a new procedure for reliability assessment of wind farms in HL1 level is proposed. In proposed procedure, application of Fuzzy – Markov f...
متن کاملGeneration Scheduling in Large-Scale Power Systems with Wind Farms Using MICA
The growth in demand for electric power and the rapid increase in fuel costs, in whole of theworld need to discover new energy resources for electricity production. Among of the nonconventionalresources, wind and solar energy, is known as the most promising deviceselectricity production in the future. In this thesis, we study follows to long-term generationscheduling of power systems in the pre...
متن کاملComparison of the effects of two flatness based control methods for STATCOM on improving stability in power systems including DFIG based wind farms
Power grids are complex, interconnected and nonlinear systems, and this will be more severe when they are subjected to high wind resources penetration. Static synchronous compensators (STATCOM) are used to improve voltage regulation and to meet grid codes in power systems, including doubly fed induction generators (DFIG) based wind farms. Despite the nonlinear nature of STATCOM, the conventiona...
متن کاملFuzzy-Logic Based Frequency Controller for Wind Farms Augmented With Energy Storage and PV Systems
To improve the primary frequency response in future low-inertia hybrid power system a fuzzylogic based frequency controller (FFC) for wind farms augmented with energy storage systems(wind-storage system) and intelligent PV farms for the frequency stabilization is proposed inthis paper. Using system frequency deviations the proposed controller provides bidirectionalreal p...
متن کاملTwo-Stage Stochastic Day-Ahead Market Clearing in Gas and Power Networks Integrated with Wind Energy
The significant penetration rate of wind turbines in power systems made some challenges in the operation of the systems such as large-scale power fluctuations induced by wind farms. Gas-fired plants with fast starting ability and high ramping can better handle natural uncertainties of wind power compared to other traditional plants. Therefore, the integration of electrical and natural gas syste...
متن کاملOperation Planning of Wind Farms with Pumped Storage Plants Based on Interval Type-2 Fuzzy Modeling of Uncertainties
The operation planning problem encounters several uncertainties in terms of the power system’s parameters such as load, operating reserve and wind power generation. The modeling of those uncertainties is an important issue in power system operation. The system operators can implement different approaches to manage these uncertainties such as stochastic and fuzzy methods. In this paper, new ...
متن کامل